$$$b^{x}$$$ 對 $$$x$$$ 的積分
您的輸入
求$$$\int b^{x}\, dx$$$。
解答
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=b$$$:
$${\color{red}{\int{b^{x} d x}}} = {\color{red}{\frac{b^{x}}{\ln{\left(b \right)}}}}$$
因此,
$$\int{b^{x} d x} = \frac{b^{x}}{\ln{\left(b \right)}}$$
加上積分常數:
$$\int{b^{x} d x} = \frac{b^{x}}{\ln{\left(b \right)}}+C$$
答案
$$$\int b^{x}\, dx = \frac{b^{x}}{\ln\left(b\right)} + C$$$A
Please try a new game Rotatly