$$$x$$$ değişkenine göre $$$b^{x}$$$ fonksiyonunun integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int b^{x}\, dx$$$.
Çözüm
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=b$$$:
$${\color{red}{\int{b^{x} d x}}} = {\color{red}{\frac{b^{x}}{\ln{\left(b \right)}}}}$$
Dolayısıyla,
$$\int{b^{x} d x} = \frac{b^{x}}{\ln{\left(b \right)}}$$
İntegrasyon sabitini ekleyin:
$$\int{b^{x} d x} = \frac{b^{x}}{\ln{\left(b \right)}}+C$$
Cevap
$$$\int b^{x}\, dx = \frac{b^{x}}{\ln\left(b\right)} + C$$$A
Please try a new game Rotatly