$$$\sec^{2}{\left(t \right)}$$$ 的積分
您的輸入
求$$$\int \sec^{2}{\left(t \right)}\, dt$$$。
解答
$$$\sec^{2}{\left(t \right)}$$$ 的積分是 $$$\int{\sec^{2}{\left(t \right)} d t} = \tan{\left(t \right)}$$$:
$${\color{red}{\int{\sec^{2}{\left(t \right)} d t}}} = {\color{red}{\tan{\left(t \right)}}}$$
因此,
$$\int{\sec^{2}{\left(t \right)} d t} = \tan{\left(t \right)}$$
加上積分常數:
$$\int{\sec^{2}{\left(t \right)} d t} = \tan{\left(t \right)}+C$$
答案
$$$\int \sec^{2}{\left(t \right)}\, dt = \tan{\left(t \right)} + C$$$A
Please try a new game Rotatly