Integral of $$$\sec^{2}{\left(t \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \sec^{2}{\left(t \right)}\, dt$$$.
Solution
The integral of $$$\sec^{2}{\left(t \right)}$$$ is $$$\int{\sec^{2}{\left(t \right)} d t} = \tan{\left(t \right)}$$$:
$${\color{red}{\int{\sec^{2}{\left(t \right)} d t}}} = {\color{red}{\tan{\left(t \right)}}}$$
Therefore,
$$\int{\sec^{2}{\left(t \right)} d t} = \tan{\left(t \right)}$$
Add the constant of integration:
$$\int{\sec^{2}{\left(t \right)} d t} = \tan{\left(t \right)}+C$$
Answer
$$$\int \sec^{2}{\left(t \right)}\, dt = \tan{\left(t \right)} + C$$$A
Please try a new game Rotatly