Integral de $$$\sec^{2}{\left(t \right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \sec^{2}{\left(t \right)}\, dt$$$.
Solución
La integral de $$$\sec^{2}{\left(t \right)}$$$ es $$$\int{\sec^{2}{\left(t \right)} d t} = \tan{\left(t \right)}$$$:
$${\color{red}{\int{\sec^{2}{\left(t \right)} d t}}} = {\color{red}{\tan{\left(t \right)}}}$$
Por lo tanto,
$$\int{\sec^{2}{\left(t \right)} d t} = \tan{\left(t \right)}$$
Añade la constante de integración:
$$\int{\sec^{2}{\left(t \right)} d t} = \tan{\left(t \right)}+C$$
Respuesta
$$$\int \sec^{2}{\left(t \right)}\, dt = \tan{\left(t \right)} + C$$$A
Please try a new game Rotatly