Integral dari $$$\sec^{2}{\left(t \right)}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \sec^{2}{\left(t \right)}\, dt$$$.
Solusi
Integral dari $$$\sec^{2}{\left(t \right)}$$$ adalah $$$\int{\sec^{2}{\left(t \right)} d t} = \tan{\left(t \right)}$$$:
$${\color{red}{\int{\sec^{2}{\left(t \right)} d t}}} = {\color{red}{\tan{\left(t \right)}}}$$
Oleh karena itu,
$$\int{\sec^{2}{\left(t \right)} d t} = \tan{\left(t \right)}$$
Tambahkan konstanta integrasi:
$$\int{\sec^{2}{\left(t \right)} d t} = \tan{\left(t \right)}+C$$
Jawaban
$$$\int \sec^{2}{\left(t \right)}\, dt = \tan{\left(t \right)} + C$$$A
Please try a new game Rotatly