Huvudnormalvektor för $$$\mathbf{\vec{r}\left(t\right)} = \left\langle t, \frac{t^{2}}{2}, t^{2}\right\rangle$$$
Relaterade kalkylatorer: Kalkylator för enhetstangentvektor, Kalkylator för enhetsbinormalvektor
Din inmatning
Bestäm den principala enhetsnormalvektorn för $$$\mathbf{\vec{r}\left(t\right)} = \left\langle t, \frac{t^{2}}{2}, t^{2}\right\rangle$$$.
Lösning
För att bestämma huvudnormalvektorn behöver vi bestämma derivatan av enhetstangentvektorn $$$\mathbf{\vec{T}\left(t\right)}$$$ och sedan normalisera den (göra den till enhetsvektor).
Bestäm enhetstangentvektorn: $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{1}{\sqrt{5 t^{2} + 1}}, \frac{t}{\sqrt{5 t^{2} + 1}}, \frac{2 t}{\sqrt{5 t^{2} + 1}}\right\rangle$$$ (för stegen, se kalkylator för enhetstangentvektor).
$$$\mathbf{\vec{T}^{\prime}\left(t\right)} = \left\langle - \frac{5 t}{\left(5 t^{2} + 1\right)^{\frac{3}{2}}}, \frac{1}{\left(5 t^{2} + 1\right)^{\frac{3}{2}}}, \frac{2}{\left(5 t^{2} + 1\right)^{\frac{3}{2}}}\right\rangle$$$ (för stegen, se derivataräknare).
Bestäm enhetsvektorn för $$$\mathbf{\vec{N}\left(t\right)} = \left\langle - \frac{\sqrt{5} t}{\sqrt{5 t^{2} + 1}}, \frac{\sqrt{5}}{5 \sqrt{5 t^{2} + 1}}, \frac{2 \sqrt{5}}{5 \sqrt{5 t^{2} + 1}}\right\rangle$$$ (för steg, se enhetsvektorräknare).
Svar
Huvudnormalvektorn är $$$\mathbf{\vec{N}\left(t\right)} = \left\langle - \frac{\sqrt{5} t}{\sqrt{5 t^{2} + 1}}, \frac{\sqrt{5}}{5 \sqrt{5 t^{2} + 1}}, \frac{2 \sqrt{5}}{5 \sqrt{5 t^{2} + 1}}\right\rangle.$$$A