Huvudnormalvektor för $$$\mathbf{\vec{r}\left(t\right)} = \left\langle t, \frac{t^{2}}{2}, t^{2}\right\rangle$$$

Kalkylatorn beräknar den principala enhetsnormalvektorn för $$$\mathbf{\vec{r}\left(t\right)} = \left\langle t, \frac{t^{2}}{2}, t^{2}\right\rangle$$$, med stegvis lösning.

Relaterade kalkylatorer: Kalkylator för enhetstangentvektor, Kalkylator för enhetsbinormalvektor

$$$\langle$$$ $$$\rangle$$$
Kommaseparerat.
Lämna tomt om du inte behöver vektorn i en specifik punkt.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm den principala enhetsnormalvektorn för $$$\mathbf{\vec{r}\left(t\right)} = \left\langle t, \frac{t^{2}}{2}, t^{2}\right\rangle$$$.

Lösning

För att bestämma huvudnormalvektorn behöver vi bestämma derivatan av enhetstangentvektorn $$$\mathbf{\vec{T}\left(t\right)}$$$ och sedan normalisera den (göra den till enhetsvektor).

Bestäm enhetstangentvektorn: $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{1}{\sqrt{5 t^{2} + 1}}, \frac{t}{\sqrt{5 t^{2} + 1}}, \frac{2 t}{\sqrt{5 t^{2} + 1}}\right\rangle$$$ (för stegen, se kalkylator för enhetstangentvektor).

$$$\mathbf{\vec{T}^{\prime}\left(t\right)} = \left\langle - \frac{5 t}{\left(5 t^{2} + 1\right)^{\frac{3}{2}}}, \frac{1}{\left(5 t^{2} + 1\right)^{\frac{3}{2}}}, \frac{2}{\left(5 t^{2} + 1\right)^{\frac{3}{2}}}\right\rangle$$$ (för stegen, se derivataräknare).

Bestäm enhetsvektorn för $$$\mathbf{\vec{N}\left(t\right)} = \left\langle - \frac{\sqrt{5} t}{\sqrt{5 t^{2} + 1}}, \frac{\sqrt{5}}{5 \sqrt{5 t^{2} + 1}}, \frac{2 \sqrt{5}}{5 \sqrt{5 t^{2} + 1}}\right\rangle$$$ (för steg, se enhetsvektorräknare).

Svar

Huvudnormalvektorn är $$$\mathbf{\vec{N}\left(t\right)} = \left\langle - \frac{\sqrt{5} t}{\sqrt{5 t^{2} + 1}}, \frac{\sqrt{5}}{5 \sqrt{5 t^{2} + 1}}, \frac{2 \sqrt{5}}{5 \sqrt{5 t^{2} + 1}}\right\rangle.$$$A


Please try a new game Rotatly