$$$\mathbf{\vec{r}\left(t\right)} = \left\langle t, \frac{t^{2}}{2}, t^{2}\right\rangle$$$ 的主单位法向量
您的输入
求$$$\mathbf{\vec{r}\left(t\right)} = \left\langle t, \frac{t^{2}}{2}, t^{2}\right\rangle$$$的主单位法向量。
解答
为了找到主单位法向量,我们需要对单位切向量 $$$\mathbf{\vec{T}\left(t\right)}$$$ 求导,然后将其单位化(得到单位向量)。
求单位切向量:$$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{1}{\sqrt{5 t^{2} + 1}}, \frac{t}{\sqrt{5 t^{2} + 1}}, \frac{2 t}{\sqrt{5 t^{2} + 1}}\right\rangle$$$(步骤见单位切向量计算器)。
$$$\mathbf{\vec{T}^{\prime}\left(t\right)} = \left\langle - \frac{5 t}{\left(5 t^{2} + 1\right)^{\frac{3}{2}}}, \frac{1}{\left(5 t^{2} + 1\right)^{\frac{3}{2}}}, \frac{2}{\left(5 t^{2} + 1\right)^{\frac{3}{2}}}\right\rangle$$$(步骤参见导数计算器)。
求单位向量:$$$\mathbf{\vec{N}\left(t\right)} = \left\langle - \frac{\sqrt{5} t}{\sqrt{5 t^{2} + 1}}, \frac{\sqrt{5}}{5 \sqrt{5 t^{2} + 1}}, \frac{2 \sqrt{5}}{5 \sqrt{5 t^{2} + 1}}\right\rangle$$$(步骤详见 单位向量计算器)。
答案
主单位法向量为 $$$\mathbf{\vec{N}\left(t\right)} = \left\langle - \frac{\sqrt{5} t}{\sqrt{5 t^{2} + 1}}, \frac{\sqrt{5}}{5 \sqrt{5 t^{2} + 1}}, \frac{2 \sqrt{5}}{5 \sqrt{5 t^{2} + 1}}\right\rangle$$$A。