Integral de $$$\frac{\sqrt{\frac{\ln\left(x\right)}{x}}}{\sqrt{x \ln\left(x\right)}}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{\sqrt{\frac{\ln\left(x\right)}{x}}}{\sqrt{x \ln\left(x\right)}}\, dx$$$.
Solução
A entrada é reescrita como: $$$\int{\frac{\sqrt{\frac{\ln{\left(x \right)}}{x}}}{\sqrt{x \ln{\left(x \right)}}} d x}=\int{\frac{1}{x} d x}$$$.
A integral de $$$\frac{1}{x}$$$ é $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$${\color{red}{\int{\frac{1}{x} d x}}} = {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
Portanto,
$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$
Adicione a constante de integração:
$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}+C$$
Resposta
$$$\int \frac{\sqrt{\frac{\ln\left(x\right)}{x}}}{\sqrt{x \ln\left(x\right)}}\, dx = \ln\left(\left|{x}\right|\right) + C$$$A