Integral of $$$\frac{\sqrt{\frac{\ln\left(x\right)}{x}}}{\sqrt{x \ln\left(x\right)}}$$$

The calculator will find the integral/antiderivative of $$$\frac{\sqrt{\frac{\ln\left(x\right)}{x}}}{\sqrt{x \ln\left(x\right)}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{\sqrt{\frac{\ln\left(x\right)}{x}}}{\sqrt{x \ln\left(x\right)}}\, dx$$$.

Solution

The input is rewritten: $$$\int{\frac{\sqrt{\frac{\ln{\left(x \right)}}{x}}}{\sqrt{x \ln{\left(x \right)}}} d x}=\int{\frac{1}{x} d x}$$$.

The integral of $$$\frac{1}{x}$$$ is $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:

$${\color{red}{\int{\frac{1}{x} d x}}} = {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$

Therefore,

$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$

Add the constant of integration:

$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}+C$$

Answer

$$$\int \frac{\sqrt{\frac{\ln\left(x\right)}{x}}}{\sqrt{x \ln\left(x\right)}}\, dx = \ln\left(\left|{x}\right|\right) + C$$$A


Please try a new game Rotatly