Ολοκλήρωμα του $$$\frac{\sqrt{\frac{\ln\left(x\right)}{x}}}{\sqrt{x \ln\left(x\right)}}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\frac{\sqrt{\frac{\ln\left(x\right)}{x}}}{\sqrt{x \ln\left(x\right)}}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \frac{\sqrt{\frac{\ln\left(x\right)}{x}}}{\sqrt{x \ln\left(x\right)}}\, dx$$$.

Λύση

Η είσοδος επαναγράφεται: $$$\int{\frac{\sqrt{\frac{\ln{\left(x \right)}}{x}}}{\sqrt{x \ln{\left(x \right)}}} d x}=\int{\frac{1}{x} d x}$$$.

Το ολοκλήρωμα του $$$\frac{1}{x}$$$ είναι $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:

$${\color{red}{\int{\frac{1}{x} d x}}} = {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$

Επομένως,

$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}+C$$

Απάντηση

$$$\int \frac{\sqrt{\frac{\ln\left(x\right)}{x}}}{\sqrt{x \ln\left(x\right)}}\, dx = \ln\left(\left|{x}\right|\right) + C$$$A


Please try a new game Rotatly