Identifique a seção cônica $$$x^{2} \ln\left(4\right) \ln\left(43\right) = \ln\left(415\right)$$$

A calculadora identificará e encontrará as propriedades da seção cônica $$$x^{2} \ln\left(4\right) \ln\left(43\right) = \ln\left(415\right)$$$, mostrando os passos.

Calculadoras relacionadas: Calculadora de parábola, Calculadora de círculo, Calculadora de Elipse, Calculadora de Hipérbole

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Identifique e encontre as propriedades da seção cônica $$$x^{2} \ln\left(4\right) \ln\left(43\right) = \ln\left(415\right)$$$.

Solução

A equação geral de uma seção cônica é $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$.

No nosso caso, $$$A = \ln\left(4\right) \ln\left(43\right)$$$, $$$B = 0$$$, $$$C = 0$$$, $$$D = 0$$$, $$$E = 0$$$, $$$F = - \ln\left(415\right)$$$.

O discriminante da seção cônica é $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = 0$$$.

Em seguida, $$$B^{2} - 4 A C = 0$$$.

Como $$$\Delta = 0$$$, esta é uma seção cônica degenerada.

Como $$$B^{2} - 4 A C = 0$$$, a equação representa duas retas paralelas.

Resposta

$$$x^{2} \ln\left(4\right) \ln\left(43\right) = \ln\left(415\right)$$$A representa um par de retas $$$x = - \frac{\sqrt{\ln\left(256\right)} \sqrt{\ln\left(415\right)}}{2 \ln\left(4\right) \sqrt{\ln\left(43\right)}}$$$, $$$x = \frac{\sqrt{\ln\left(256\right)} \sqrt{\ln\left(415\right)}}{2 \ln\left(4\right) \sqrt{\ln\left(43\right)}}$$$A.

Forma geral: $$$x^{2} \ln\left(4\right) \ln\left(43\right) - \ln\left(415\right) = 0$$$A.

Forma fatorada: $$$\left(2 x \ln\left(4\right) \sqrt{\ln\left(43\right)} - \sqrt{\ln\left(256\right)} \sqrt{\ln\left(415\right)}\right) \left(2 x \ln\left(4\right) \sqrt{\ln\left(43\right)} + \sqrt{\ln\left(256\right)} \sqrt{\ln\left(415\right)}\right) = 0.$$$A

Gráfico: veja a calculadora gráfica.


Please try a new game Rotatly