Tunnista kartioleikkaus $$$x^{2} \ln\left(4\right) \ln\left(43\right) = \ln\left(415\right)$$$
Aiheeseen liittyvät laskurit: Paraabelilaskin, Ympyrälaskin, Ellipsilaskin, Hyperbelilaskin
Syötteesi
Tunnista ja määritä kartioleikkauksen $$$x^{2} \ln\left(4\right) \ln\left(43\right) = \ln\left(415\right)$$$ ominaisuudet.
Ratkaisu
Kartiokäyrän yleinen yhtälö on $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$.
Meidän tapauksessamme $$$A = \ln\left(4\right) \ln\left(43\right)$$$, $$$B = 0$$$, $$$C = 0$$$, $$$D = 0$$$, $$$E = 0$$$, $$$F = - \ln\left(415\right)$$$.
Kartioleikkauksen diskriminantti on $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = 0$$$.
Seuraavaksi $$$B^{2} - 4 A C = 0$$$.
Koska $$$\Delta = 0$$$, kyseessä on degeneroitunut kartioleikkaus.
Koska $$$B^{2} - 4 A C = 0$$$, yhtälö määrittää kaksi rinnakkaista suoraa.
Vastaus
$$$x^{2} \ln\left(4\right) \ln\left(43\right) = \ln\left(415\right)$$$A määrittää suoraparin $$$x = - \frac{\sqrt{\ln\left(256\right)} \sqrt{\ln\left(415\right)}}{2 \ln\left(4\right) \sqrt{\ln\left(43\right)}}$$$, $$$x = \frac{\sqrt{\ln\left(256\right)} \sqrt{\ln\left(415\right)}}{2 \ln\left(4\right) \sqrt{\ln\left(43\right)}}$$$A.
Yleinen muoto: $$$x^{2} \ln\left(4\right) \ln\left(43\right) - \ln\left(415\right) = 0$$$A.
Tekijämuoto: $$$\left(2 x \ln\left(4\right) \sqrt{\ln\left(43\right)} - \sqrt{\ln\left(256\right)} \sqrt{\ln\left(415\right)}\right) \left(2 x \ln\left(4\right) \sqrt{\ln\left(43\right)} + \sqrt{\ln\left(256\right)} \sqrt{\ln\left(415\right)}\right) = 0.$$$A
Kuvaaja: katso graphing calculator.