Προσδιορίστε την κωνική τομή $$$x^{2} \ln\left(4\right) \ln\left(43\right) = \ln\left(415\right)$$$
Σχετικοί υπολογιστές: Υπολογιστής παραβολής, Υπολογιστής Κύκλου, Υπολογιστής έλλειψης, Υπολογιστής υπερβολής
Η είσοδός σας
Αναγνωρίστε την κωνική τομή $$$x^{2} \ln\left(4\right) \ln\left(43\right) = \ln\left(415\right)$$$ και βρείτε τις ιδιότητές της.
Λύση
Η γενική εξίσωση μιας κωνικής τομής είναι $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$.
Στην περίπτωσή μας, $$$A = \ln\left(4\right) \ln\left(43\right)$$$, $$$B = 0$$$, $$$C = 0$$$, $$$D = 0$$$, $$$E = 0$$$, $$$F = - \ln\left(415\right)$$$.
Η διακρίνουσα της κωνικής τομής είναι $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = 0$$$.
Στη συνέχεια, $$$B^{2} - 4 A C = 0$$$.
Εφόσον $$$\Delta = 0$$$, πρόκειται για εκφυλισμένη κωνική τομή.
Εφόσον $$$B^{2} - 4 A C = 0$$$, η εξίσωση παριστάνει δύο παράλληλες ευθείες.
Απάντηση
$$$x^{2} \ln\left(4\right) \ln\left(43\right) = \ln\left(415\right)$$$A αναπαριστά το ζεύγος των ευθειών $$$x = - \frac{\sqrt{\ln\left(256\right)} \sqrt{\ln\left(415\right)}}{2 \ln\left(4\right) \sqrt{\ln\left(43\right)}}$$$, $$$x = \frac{\sqrt{\ln\left(256\right)} \sqrt{\ln\left(415\right)}}{2 \ln\left(4\right) \sqrt{\ln\left(43\right)}}$$$A.
Γενική μορφή: $$$x^{2} \ln\left(4\right) \ln\left(43\right) - \ln\left(415\right) = 0$$$A.
Παραγοντοποιημένη μορφή: $$$\left(2 x \ln\left(4\right) \sqrt{\ln\left(43\right)} - \sqrt{\ln\left(256\right)} \sqrt{\ln\left(415\right)}\right) \left(2 x \ln\left(4\right) \sqrt{\ln\left(43\right)} + \sqrt{\ln\left(256\right)} \sqrt{\ln\left(415\right)}\right) = 0.$$$A
Γράφημα: δείτε το graphing calculator.