Identifique a seção cônica $$$- 3 x^{2} + 7 x - 12 = 0$$$
Calculadoras relacionadas: Calculadora de parábola, Calculadora de círculo, Calculadora de Elipse, Calculadora de Hipérbole
Sua entrada
Identifique e encontre as propriedades da seção cônica $$$- 3 x^{2} + 7 x - 12 = 0$$$.
Solução
A equação geral de uma seção cônica é $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$.
No nosso caso, $$$A = 3$$$, $$$B = 0$$$, $$$C = 0$$$, $$$D = -7$$$, $$$E = 0$$$, $$$F = 12$$$.
O discriminante da seção cônica é $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = 0$$$.
Em seguida, $$$B^{2} - 4 A C = 0$$$.
Como $$$\Delta = 0$$$, esta é uma seção cônica degenerada.
Como $$$B^{2} - 4 A C = 0$$$, a equação representa duas retas imaginárias.
Resposta
$$$- 3 x^{2} + 7 x - 12 = 0$$$A representa duas retas imaginárias.
Forma geral: $$$3 x^{2} - 7 x + 12 = 0$$$A.