Integraal van $$$e^{- a l m x}$$$ met betrekking tot $$$a$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int e^{- a l m x}\, da$$$.
Oplossing
Zij $$$u=- a l m x$$$.
Dan $$$du=\left(- a l m x\right)^{\prime }da = - l m x da$$$ (de stappen zijn te zien »), en dan geldt dat $$$da = - \frac{du}{l m x}$$$.
Dus,
$${\color{red}{\int{e^{- a l m x} d a}}} = {\color{red}{\int{\left(- \frac{e^{u}}{l m x}\right)d u}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=- \frac{1}{l m x}$$$ en $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{\left(- \frac{e^{u}}{l m x}\right)d u}}} = {\color{red}{\left(- \frac{\int{e^{u} d u}}{l m x}\right)}}$$
De integraal van de exponentiële functie is $$$\int{e^{u} d u} = e^{u}$$$:
$$- \frac{{\color{red}{\int{e^{u} d u}}}}{l m x} = - \frac{{\color{red}{e^{u}}}}{l m x}$$
We herinneren eraan dat $$$u=- a l m x$$$:
$$- \frac{e^{{\color{red}{u}}}}{l m x} = - \frac{e^{{\color{red}{\left(- a l m x\right)}}}}{l m x}$$
Dus,
$$\int{e^{- a l m x} d a} = - \frac{e^{- a l m x}}{l m x}$$
Voeg de integratieconstante toe:
$$\int{e^{- a l m x} d a} = - \frac{e^{- a l m x}}{l m x}+C$$
Antwoord
$$$\int e^{- a l m x}\, da = - \frac{e^{- a l m x}}{l m x} + C$$$A