Integralen av $$$e^{- a l m x}$$$ med avseende på $$$a$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int e^{- a l m x}\, da$$$.
Lösning
Låt $$$u=- a l m x$$$ vara.
Då $$$du=\left(- a l m x\right)^{\prime }da = - l m x da$$$ (stegen kan ses »), och vi har att $$$da = - \frac{du}{l m x}$$$.
Alltså,
$${\color{red}{\int{e^{- a l m x} d a}}} = {\color{red}{\int{\left(- \frac{e^{u}}{l m x}\right)d u}}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=- \frac{1}{l m x}$$$ och $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{\left(- \frac{e^{u}}{l m x}\right)d u}}} = {\color{red}{\left(- \frac{\int{e^{u} d u}}{l m x}\right)}}$$
Integralen av den exponentiella funktionen är $$$\int{e^{u} d u} = e^{u}$$$:
$$- \frac{{\color{red}{\int{e^{u} d u}}}}{l m x} = - \frac{{\color{red}{e^{u}}}}{l m x}$$
Kom ihåg att $$$u=- a l m x$$$:
$$- \frac{e^{{\color{red}{u}}}}{l m x} = - \frac{e^{{\color{red}{\left(- a l m x\right)}}}}{l m x}$$
Alltså,
$$\int{e^{- a l m x} d a} = - \frac{e^{- a l m x}}{l m x}$$
Lägg till integrationskonstanten:
$$\int{e^{- a l m x} d a} = - \frac{e^{- a l m x}}{l m x}+C$$
Svar
$$$\int e^{- a l m x}\, da = - \frac{e^{- a l m x}}{l m x} + C$$$A