Integrale di $$$x^{\theta - 1}$$$ rispetto a $$$x$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int x^{\theta - 1}\, dx$$$.
Soluzione
Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=\theta - 1$$$:
$${\color{red}{\int{x^{\theta - 1} d x}}}={\color{red}{\frac{x^{\left(\theta - 1\right) + 1}}{\left(\theta - 1\right) + 1}}}={\color{red}{\frac{x^{\theta}}{\theta}}}$$
Pertanto,
$$\int{x^{\theta - 1} d x} = \frac{x^{\theta}}{\theta}$$
Aggiungi la costante di integrazione:
$$\int{x^{\theta - 1} d x} = \frac{x^{\theta}}{\theta}+C$$
Risposta
$$$\int x^{\theta - 1}\, dx = \frac{x^{\theta}}{\theta} + C$$$A