Radici razionali possibili ed effettive di $$$f{\left(x \right)} = x^{3} - x^{2} - 17 x - 15$$$
Il tuo input
Trova gli zeri razionali di $$$x^{3} - x^{2} - 17 x - 15 = 0$$$.
Soluzione
Poiché tutti i coefficienti sono interi, possiamo applicare il teorema delle radici razionali.
L'ultimo coefficiente (il coefficiente del termine costante) è $$$-15$$$.
Trova i suoi fattori (con il segno più e il segno meno): $$$\pm 1$$$, $$$\pm 3$$$, $$$\pm 5$$$, $$$\pm 15$$$.
Questi sono i possibili valori di $$$p$$$.
Il coefficiente principale (il coefficiente del termine di grado massimo) è $$$1$$$.
Trova i suoi fattori (con il segno più e il segno meno): $$$\pm 1$$$.
Questi sono i possibili valori di $$$q$$$.
Trova tutti i valori possibili di $$$\frac{p}{q}$$$: $$$\pm \frac{1}{1}$$$, $$$\pm \frac{3}{1}$$$, $$$\pm \frac{5}{1}$$$, $$$\pm \frac{15}{1}$$$.
Semplifica e rimuovi i duplicati (se presenti).
Queste sono le possibili radici razionali: $$$\pm 1$$$, $$$\pm 3$$$, $$$\pm 5$$$, $$$\pm 15$$$.
Successivamente, verifica le radici possibili: se $$$a$$$ è una radice del polinomio $$$P{\left(x \right)}$$$, il resto della divisione di $$$P{\left(x \right)}$$$ per $$$x - a$$$ dovrebbe essere uguale a $$$0$$$ (secondo il teorema del resto, ciò significa che $$$P{\left(a \right)} = 0$$$).
Verifica $$$1$$$: dividi $$$x^{3} - x^{2} - 17 x - 15$$$ per $$$x - 1$$$.
$$$P{\left(1 \right)} = -32$$$; pertanto, il resto è $$$-32$$$.
Verifica $$$-1$$$: dividi $$$x^{3} - x^{2} - 17 x - 15$$$ per $$$x - \left(-1\right) = x + 1$$$.
$$$P{\left(-1 \right)} = 0$$$; pertanto, il resto è $$$0$$$.
Quindi, $$$-1$$$ è una radice.
Verifica $$$3$$$: dividi $$$x^{3} - x^{2} - 17 x - 15$$$ per $$$x - 3$$$.
$$$P{\left(3 \right)} = -48$$$; pertanto, il resto è $$$-48$$$.
Verifica $$$-3$$$: dividi $$$x^{3} - x^{2} - 17 x - 15$$$ per $$$x - \left(-3\right) = x + 3$$$.
$$$P{\left(-3 \right)} = 0$$$; pertanto, il resto è $$$0$$$.
Quindi, $$$-3$$$ è una radice.
Verifica $$$5$$$: dividi $$$x^{3} - x^{2} - 17 x - 15$$$ per $$$x - 5$$$.
$$$P{\left(5 \right)} = 0$$$; pertanto, il resto è $$$0$$$.
Quindi, $$$5$$$ è una radice.
Verifica $$$-5$$$: dividi $$$x^{3} - x^{2} - 17 x - 15$$$ per $$$x - \left(-5\right) = x + 5$$$.
$$$P{\left(-5 \right)} = -80$$$; pertanto, il resto è $$$-80$$$.
Verifica $$$15$$$: dividi $$$x^{3} - x^{2} - 17 x - 15$$$ per $$$x - 15$$$.
$$$P{\left(15 \right)} = 2880$$$; pertanto, il resto è $$$2880$$$.
Verifica $$$-15$$$: dividi $$$x^{3} - x^{2} - 17 x - 15$$$ per $$$x - \left(-15\right) = x + 15$$$.
$$$P{\left(-15 \right)} = -3360$$$; pertanto, il resto è $$$-3360$$$.
Risposta
Possibili radici razionali: $$$\pm 1$$$, $$$\pm 3$$$, $$$\pm 5$$$, $$$\pm 15$$$A.
Radici razionali effettive: $$$-1$$$, $$$-3$$$, $$$5$$$A.