Integraali $$$x^{2 n}$$$:stä muuttujan $$$x$$$ suhteen
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int x^{2 n}\, dx$$$.
Ratkaisu
Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=2 n$$$:
$${\color{red}{\int{x^{2 n} d x}}}={\color{red}{\frac{x^{2 n + 1}}{2 n + 1}}}={\color{red}{\frac{x^{2 n + 1}}{2 n + 1}}}$$
Näin ollen,
$$\int{x^{2 n} d x} = \frac{x^{2 n + 1}}{2 n + 1}$$
Lisää integrointivakio:
$$\int{x^{2 n} d x} = \frac{x^{2 n + 1}}{2 n + 1}+C$$
Vastaus
$$$\int x^{2 n}\, dx = \frac{x^{2 n + 1}}{2 n + 1} + C$$$A
Please try a new game Rotatly