Funktion $$$t^{\frac{5}{2}}$$$ integraali

Laskin löytää funktion $$$t^{\frac{5}{2}}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int t^{\frac{5}{2}}\, dt$$$.

Ratkaisu

Sovella potenssisääntöä $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=\frac{5}{2}$$$:

$${\color{red}{\int{t^{\frac{5}{2}} d t}}}={\color{red}{\frac{t^{1 + \frac{5}{2}}}{1 + \frac{5}{2}}}}={\color{red}{\left(\frac{2 t^{\frac{7}{2}}}{7}\right)}}$$

Näin ollen,

$$\int{t^{\frac{5}{2}} d t} = \frac{2 t^{\frac{7}{2}}}{7}$$

Lisää integrointivakio:

$$\int{t^{\frac{5}{2}} d t} = \frac{2 t^{\frac{7}{2}}}{7}+C$$

Vastaus

$$$\int t^{\frac{5}{2}}\, dt = \frac{2 t^{\frac{7}{2}}}{7} + C$$$A


Please try a new game Rotatly