$$$t^{\frac{5}{2}}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$t^{\frac{5}{2}}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int t^{\frac{5}{2}}\, dt$$$.

Çözüm

Kuvvet kuralını $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=\frac{5}{2}$$$ ile uygulayın:

$${\color{red}{\int{t^{\frac{5}{2}} d t}}}={\color{red}{\frac{t^{1 + \frac{5}{2}}}{1 + \frac{5}{2}}}}={\color{red}{\left(\frac{2 t^{\frac{7}{2}}}{7}\right)}}$$

Dolayısıyla,

$$\int{t^{\frac{5}{2}} d t} = \frac{2 t^{\frac{7}{2}}}{7}$$

İntegrasyon sabitini ekleyin:

$$\int{t^{\frac{5}{2}} d t} = \frac{2 t^{\frac{7}{2}}}{7}+C$$

Cevap

$$$\int t^{\frac{5}{2}}\, dt = \frac{2 t^{\frac{7}{2}}}{7} + C$$$A


Please try a new game Rotatly