$$$t^{\frac{5}{2}}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int t^{\frac{5}{2}}\, dt$$$.
Çözüm
Kuvvet kuralını $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=\frac{5}{2}$$$ ile uygulayın:
$${\color{red}{\int{t^{\frac{5}{2}} d t}}}={\color{red}{\frac{t^{1 + \frac{5}{2}}}{1 + \frac{5}{2}}}}={\color{red}{\left(\frac{2 t^{\frac{7}{2}}}{7}\right)}}$$
Dolayısıyla,
$$\int{t^{\frac{5}{2}} d t} = \frac{2 t^{\frac{7}{2}}}{7}$$
İntegrasyon sabitini ekleyin:
$$\int{t^{\frac{5}{2}} d t} = \frac{2 t^{\frac{7}{2}}}{7}+C$$
Cevap
$$$\int t^{\frac{5}{2}}\, dt = \frac{2 t^{\frac{7}{2}}}{7} + C$$$A
Please try a new game Rotatly