Integral dari $$$t^{\frac{5}{2}}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$t^{\frac{5}{2}}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int t^{\frac{5}{2}}\, dt$$$.

Solusi

Terapkan aturan pangkat $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=\frac{5}{2}$$$:

$${\color{red}{\int{t^{\frac{5}{2}} d t}}}={\color{red}{\frac{t^{1 + \frac{5}{2}}}{1 + \frac{5}{2}}}}={\color{red}{\left(\frac{2 t^{\frac{7}{2}}}{7}\right)}}$$

Oleh karena itu,

$$\int{t^{\frac{5}{2}} d t} = \frac{2 t^{\frac{7}{2}}}{7}$$

Tambahkan konstanta integrasi:

$$\int{t^{\frac{5}{2}} d t} = \frac{2 t^{\frac{7}{2}}}{7}+C$$

Jawaban

$$$\int t^{\frac{5}{2}}\, dt = \frac{2 t^{\frac{7}{2}}}{7} + C$$$A


Please try a new game Rotatly