Integral de $$$t^{\frac{5}{2}}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int t^{\frac{5}{2}}\, dt$$$.
Solución
Aplica la regla de la potencia $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=\frac{5}{2}$$$:
$${\color{red}{\int{t^{\frac{5}{2}} d t}}}={\color{red}{\frac{t^{1 + \frac{5}{2}}}{1 + \frac{5}{2}}}}={\color{red}{\left(\frac{2 t^{\frac{7}{2}}}{7}\right)}}$$
Por lo tanto,
$$\int{t^{\frac{5}{2}} d t} = \frac{2 t^{\frac{7}{2}}}{7}$$
Añade la constante de integración:
$$\int{t^{\frac{5}{2}} d t} = \frac{2 t^{\frac{7}{2}}}{7}+C$$
Respuesta
$$$\int t^{\frac{5}{2}}\, dt = \frac{2 t^{\frac{7}{2}}}{7} + C$$$A