Integral von $$$e^{t^{2}} - e^{- t^{2}}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \left(e^{t^{2}} - e^{- t^{2}}\right)\, dt$$$.
Lösung
Gliedweise integrieren:
$${\color{red}{\int{\left(e^{t^{2}} - e^{- t^{2}}\right)d t}}} = {\color{red}{\left(- \int{e^{- t^{2}} d t} + \int{e^{t^{2}} d t}\right)}}$$
Dieses Integral (Fehlerfunktion) besitzt keine geschlossene Form:
$$\int{e^{t^{2}} d t} - {\color{red}{\int{e^{- t^{2}} d t}}} = \int{e^{t^{2}} d t} - {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(t \right)}}{2}\right)}}$$
Dieses Integral (Imaginäre Fehlerfunktion) besitzt keine geschlossene Form:
$$- \frac{\sqrt{\pi} \operatorname{erf}{\left(t \right)}}{2} + {\color{red}{\int{e^{t^{2}} d t}}} = - \frac{\sqrt{\pi} \operatorname{erf}{\left(t \right)}}{2} + {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(t \right)}}{2}\right)}}$$
Daher,
$$\int{\left(e^{t^{2}} - e^{- t^{2}}\right)d t} = - \frac{\sqrt{\pi} \operatorname{erf}{\left(t \right)}}{2} + \frac{\sqrt{\pi} \operatorname{erfi}{\left(t \right)}}{2}$$
Vereinfachen:
$$\int{\left(e^{t^{2}} - e^{- t^{2}}\right)d t} = \frac{\sqrt{\pi} \left(- \operatorname{erf}{\left(t \right)} + \operatorname{erfi}{\left(t \right)}\right)}{2}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\left(e^{t^{2}} - e^{- t^{2}}\right)d t} = \frac{\sqrt{\pi} \left(- \operatorname{erf}{\left(t \right)} + \operatorname{erfi}{\left(t \right)}\right)}{2}+C$$
Antwort
$$$\int \left(e^{t^{2}} - e^{- t^{2}}\right)\, dt = \frac{\sqrt{\pi} \left(- \operatorname{erf}{\left(t \right)} + \operatorname{erfi}{\left(t \right)}\right)}{2} + C$$$A