Integral of $$$e^{t^{2}} - e^{- t^{2}}$$$

The calculator will find the integral/antiderivative of $$$e^{t^{2}} - e^{- t^{2}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(e^{t^{2}} - e^{- t^{2}}\right)\, dt$$$.

Solution

Integrate term by term:

$${\color{red}{\int{\left(e^{t^{2}} - e^{- t^{2}}\right)d t}}} = {\color{red}{\left(- \int{e^{- t^{2}} d t} + \int{e^{t^{2}} d t}\right)}}$$

This integral (Error Function) does not have a closed form:

$$\int{e^{t^{2}} d t} - {\color{red}{\int{e^{- t^{2}} d t}}} = \int{e^{t^{2}} d t} - {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(t \right)}}{2}\right)}}$$

This integral (Imaginary Error Function) does not have a closed form:

$$- \frac{\sqrt{\pi} \operatorname{erf}{\left(t \right)}}{2} + {\color{red}{\int{e^{t^{2}} d t}}} = - \frac{\sqrt{\pi} \operatorname{erf}{\left(t \right)}}{2} + {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(t \right)}}{2}\right)}}$$

Therefore,

$$\int{\left(e^{t^{2}} - e^{- t^{2}}\right)d t} = - \frac{\sqrt{\pi} \operatorname{erf}{\left(t \right)}}{2} + \frac{\sqrt{\pi} \operatorname{erfi}{\left(t \right)}}{2}$$

Simplify:

$$\int{\left(e^{t^{2}} - e^{- t^{2}}\right)d t} = \frac{\sqrt{\pi} \left(- \operatorname{erf}{\left(t \right)} + \operatorname{erfi}{\left(t \right)}\right)}{2}$$

Add the constant of integration:

$$\int{\left(e^{t^{2}} - e^{- t^{2}}\right)d t} = \frac{\sqrt{\pi} \left(- \operatorname{erf}{\left(t \right)} + \operatorname{erfi}{\left(t \right)}\right)}{2}+C$$

Answer

$$$\int \left(e^{t^{2}} - e^{- t^{2}}\right)\, dt = \frac{\sqrt{\pi} \left(- \operatorname{erf}{\left(t \right)} + \operatorname{erfi}{\left(t \right)}\right)}{2} + C$$$A


Please try a new game Rotatly