$$$e^{t^{2}} - e^{- t^{2}}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \left(e^{t^{2}} - e^{- t^{2}}\right)\, dt$$$.
Çözüm
Her terimin integralini alın:
$${\color{red}{\int{\left(e^{t^{2}} - e^{- t^{2}}\right)d t}}} = {\color{red}{\left(- \int{e^{- t^{2}} d t} + \int{e^{t^{2}} d t}\right)}}$$
Bu integralin (Hata Fonksiyonu) kapalı biçimli bir ifadesi yok:
$$\int{e^{t^{2}} d t} - {\color{red}{\int{e^{- t^{2}} d t}}} = \int{e^{t^{2}} d t} - {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(t \right)}}{2}\right)}}$$
Bu integralin (İmajiner Hata Fonksiyonu) kapalı biçimli bir ifadesi yok:
$$- \frac{\sqrt{\pi} \operatorname{erf}{\left(t \right)}}{2} + {\color{red}{\int{e^{t^{2}} d t}}} = - \frac{\sqrt{\pi} \operatorname{erf}{\left(t \right)}}{2} + {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(t \right)}}{2}\right)}}$$
Dolayısıyla,
$$\int{\left(e^{t^{2}} - e^{- t^{2}}\right)d t} = - \frac{\sqrt{\pi} \operatorname{erf}{\left(t \right)}}{2} + \frac{\sqrt{\pi} \operatorname{erfi}{\left(t \right)}}{2}$$
Sadeleştirin:
$$\int{\left(e^{t^{2}} - e^{- t^{2}}\right)d t} = \frac{\sqrt{\pi} \left(- \operatorname{erf}{\left(t \right)} + \operatorname{erfi}{\left(t \right)}\right)}{2}$$
İntegrasyon sabitini ekleyin:
$$\int{\left(e^{t^{2}} - e^{- t^{2}}\right)d t} = \frac{\sqrt{\pi} \left(- \operatorname{erf}{\left(t \right)} + \operatorname{erfi}{\left(t \right)}\right)}{2}+C$$
Cevap
$$$\int \left(e^{t^{2}} - e^{- t^{2}}\right)\, dt = \frac{\sqrt{\pi} \left(- \operatorname{erf}{\left(t \right)} + \operatorname{erfi}{\left(t \right)}\right)}{2} + C$$$A