Funktion $$$e^{t^{2}} - e^{- t^{2}}$$$ integraali

Laskin löytää funktion $$$e^{t^{2}} - e^{- t^{2}}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \left(e^{t^{2}} - e^{- t^{2}}\right)\, dt$$$.

Ratkaisu

Integroi termi kerrallaan:

$${\color{red}{\int{\left(e^{t^{2}} - e^{- t^{2}}\right)d t}}} = {\color{red}{\left(- \int{e^{- t^{2}} d t} + \int{e^{t^{2}} d t}\right)}}$$

Tällä integraalilla (Virhefunktio) ei ole suljettua muotoa:

$$\int{e^{t^{2}} d t} - {\color{red}{\int{e^{- t^{2}} d t}}} = \int{e^{t^{2}} d t} - {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(t \right)}}{2}\right)}}$$

Tällä integraalilla (Imaginäärinen virhefunktio) ei ole suljettua muotoa:

$$- \frac{\sqrt{\pi} \operatorname{erf}{\left(t \right)}}{2} + {\color{red}{\int{e^{t^{2}} d t}}} = - \frac{\sqrt{\pi} \operatorname{erf}{\left(t \right)}}{2} + {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(t \right)}}{2}\right)}}$$

Näin ollen,

$$\int{\left(e^{t^{2}} - e^{- t^{2}}\right)d t} = - \frac{\sqrt{\pi} \operatorname{erf}{\left(t \right)}}{2} + \frac{\sqrt{\pi} \operatorname{erfi}{\left(t \right)}}{2}$$

Sievennä:

$$\int{\left(e^{t^{2}} - e^{- t^{2}}\right)d t} = \frac{\sqrt{\pi} \left(- \operatorname{erf}{\left(t \right)} + \operatorname{erfi}{\left(t \right)}\right)}{2}$$

Lisää integrointivakio:

$$\int{\left(e^{t^{2}} - e^{- t^{2}}\right)d t} = \frac{\sqrt{\pi} \left(- \operatorname{erf}{\left(t \right)} + \operatorname{erfi}{\left(t \right)}\right)}{2}+C$$

Vastaus

$$$\int \left(e^{t^{2}} - e^{- t^{2}}\right)\, dt = \frac{\sqrt{\pi} \left(- \operatorname{erf}{\left(t \right)} + \operatorname{erfi}{\left(t \right)}\right)}{2} + C$$$A


Please try a new game Rotatly