Integrale di $$$e^{t^{2}} - e^{- t^{2}}$$$

La calcolatrice troverà l'integrale/primitiva di $$$e^{t^{2}} - e^{- t^{2}}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \left(e^{t^{2}} - e^{- t^{2}}\right)\, dt$$$.

Soluzione

Integra termine per termine:

$${\color{red}{\int{\left(e^{t^{2}} - e^{- t^{2}}\right)d t}}} = {\color{red}{\left(- \int{e^{- t^{2}} d t} + \int{e^{t^{2}} d t}\right)}}$$

Questo integrale (Funzione di errore) non ha una forma chiusa:

$$\int{e^{t^{2}} d t} - {\color{red}{\int{e^{- t^{2}} d t}}} = \int{e^{t^{2}} d t} - {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(t \right)}}{2}\right)}}$$

Questo integrale (Funzione di errore immaginaria) non ha una forma chiusa:

$$- \frac{\sqrt{\pi} \operatorname{erf}{\left(t \right)}}{2} + {\color{red}{\int{e^{t^{2}} d t}}} = - \frac{\sqrt{\pi} \operatorname{erf}{\left(t \right)}}{2} + {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(t \right)}}{2}\right)}}$$

Pertanto,

$$\int{\left(e^{t^{2}} - e^{- t^{2}}\right)d t} = - \frac{\sqrt{\pi} \operatorname{erf}{\left(t \right)}}{2} + \frac{\sqrt{\pi} \operatorname{erfi}{\left(t \right)}}{2}$$

Semplifica:

$$\int{\left(e^{t^{2}} - e^{- t^{2}}\right)d t} = \frac{\sqrt{\pi} \left(- \operatorname{erf}{\left(t \right)} + \operatorname{erfi}{\left(t \right)}\right)}{2}$$

Aggiungi la costante di integrazione:

$$\int{\left(e^{t^{2}} - e^{- t^{2}}\right)d t} = \frac{\sqrt{\pi} \left(- \operatorname{erf}{\left(t \right)} + \operatorname{erfi}{\left(t \right)}\right)}{2}+C$$

Risposta

$$$\int \left(e^{t^{2}} - e^{- t^{2}}\right)\, dt = \frac{\sqrt{\pi} \left(- \operatorname{erf}{\left(t \right)} + \operatorname{erfi}{\left(t \right)}\right)}{2} + C$$$A


Please try a new game Rotatly