Integral von $$$\frac{2}{5 x - 1}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{2}{5 x - 1}\, dx$$$.
Lösung
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=2$$$ und $$$f{\left(x \right)} = \frac{1}{5 x - 1}$$$ an:
$${\color{red}{\int{\frac{2}{5 x - 1} d x}}} = {\color{red}{\left(2 \int{\frac{1}{5 x - 1} d x}\right)}}$$
Sei $$$u=5 x - 1$$$.
Dann $$$du=\left(5 x - 1\right)^{\prime }dx = 5 dx$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = \frac{du}{5}$$$.
Somit,
$$2 {\color{red}{\int{\frac{1}{5 x - 1} d x}}} = 2 {\color{red}{\int{\frac{1}{5 u} d u}}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{5}$$$ und $$$f{\left(u \right)} = \frac{1}{u}$$$ an:
$$2 {\color{red}{\int{\frac{1}{5 u} d u}}} = 2 {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{5}\right)}}$$
Das Integral von $$$\frac{1}{u}$$$ ist $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{2 {\color{red}{\int{\frac{1}{u} d u}}}}{5} = \frac{2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{5}$$
Zur Erinnerung: $$$u=5 x - 1$$$:
$$\frac{2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{5} = \frac{2 \ln{\left(\left|{{\color{red}{\left(5 x - 1\right)}}}\right| \right)}}{5}$$
Daher,
$$\int{\frac{2}{5 x - 1} d x} = \frac{2 \ln{\left(\left|{5 x - 1}\right| \right)}}{5}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{2}{5 x - 1} d x} = \frac{2 \ln{\left(\left|{5 x - 1}\right| \right)}}{5}+C$$
Antwort
$$$\int \frac{2}{5 x - 1}\, dx = \frac{2 \ln\left(\left|{5 x - 1}\right|\right)}{5} + C$$$A