Integral dari $$$\frac{2}{5 x - 1}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\frac{2}{5 x - 1}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \frac{2}{5 x - 1}\, dx$$$.

Solusi

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=2$$$ dan $$$f{\left(x \right)} = \frac{1}{5 x - 1}$$$:

$${\color{red}{\int{\frac{2}{5 x - 1} d x}}} = {\color{red}{\left(2 \int{\frac{1}{5 x - 1} d x}\right)}}$$

Misalkan $$$u=5 x - 1$$$.

Kemudian $$$du=\left(5 x - 1\right)^{\prime }dx = 5 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = \frac{du}{5}$$$.

Integral tersebut dapat ditulis ulang sebagai

$$2 {\color{red}{\int{\frac{1}{5 x - 1} d x}}} = 2 {\color{red}{\int{\frac{1}{5 u} d u}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{5}$$$ dan $$$f{\left(u \right)} = \frac{1}{u}$$$:

$$2 {\color{red}{\int{\frac{1}{5 u} d u}}} = 2 {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{5}\right)}}$$

Integral dari $$$\frac{1}{u}$$$ adalah $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{2 {\color{red}{\int{\frac{1}{u} d u}}}}{5} = \frac{2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{5}$$

Ingat bahwa $$$u=5 x - 1$$$:

$$\frac{2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{5} = \frac{2 \ln{\left(\left|{{\color{red}{\left(5 x - 1\right)}}}\right| \right)}}{5}$$

Oleh karena itu,

$$\int{\frac{2}{5 x - 1} d x} = \frac{2 \ln{\left(\left|{5 x - 1}\right| \right)}}{5}$$

Tambahkan konstanta integrasi:

$$\int{\frac{2}{5 x - 1} d x} = \frac{2 \ln{\left(\left|{5 x - 1}\right| \right)}}{5}+C$$

Jawaban

$$$\int \frac{2}{5 x - 1}\, dx = \frac{2 \ln\left(\left|{5 x - 1}\right|\right)}{5} + C$$$A


Please try a new game Rotatly