$$$\frac{2}{5 x - 1}$$$의 적분
사용자 입력
$$$\int \frac{2}{5 x - 1}\, dx$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=2$$$와 $$$f{\left(x \right)} = \frac{1}{5 x - 1}$$$에 적용하세요:
$${\color{red}{\int{\frac{2}{5 x - 1} d x}}} = {\color{red}{\left(2 \int{\frac{1}{5 x - 1} d x}\right)}}$$
$$$u=5 x - 1$$$라 하자.
그러면 $$$du=\left(5 x - 1\right)^{\prime }dx = 5 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{5}$$$임을 얻습니다.
적분은 다음과 같이 다시 쓸 수 있습니다.
$$2 {\color{red}{\int{\frac{1}{5 x - 1} d x}}} = 2 {\color{red}{\int{\frac{1}{5 u} d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{5}$$$와 $$$f{\left(u \right)} = \frac{1}{u}$$$에 적용하세요:
$$2 {\color{red}{\int{\frac{1}{5 u} d u}}} = 2 {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{5}\right)}}$$
$$$\frac{1}{u}$$$의 적분은 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{2 {\color{red}{\int{\frac{1}{u} d u}}}}{5} = \frac{2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{5}$$
다음 $$$u=5 x - 1$$$을 기억하라:
$$\frac{2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{5} = \frac{2 \ln{\left(\left|{{\color{red}{\left(5 x - 1\right)}}}\right| \right)}}{5}$$
따라서,
$$\int{\frac{2}{5 x - 1} d x} = \frac{2 \ln{\left(\left|{5 x - 1}\right| \right)}}{5}$$
적분 상수를 추가하세요:
$$\int{\frac{2}{5 x - 1} d x} = \frac{2 \ln{\left(\left|{5 x - 1}\right| \right)}}{5}+C$$
정답
$$$\int \frac{2}{5 x - 1}\, dx = \frac{2 \ln\left(\left|{5 x - 1}\right|\right)}{5} + C$$$A