$$$\frac{2}{5 x - 1}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{2}{5 x - 1}\, dx$$$.
Çözüm
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=2$$$ ve $$$f{\left(x \right)} = \frac{1}{5 x - 1}$$$ ile uygula:
$${\color{red}{\int{\frac{2}{5 x - 1} d x}}} = {\color{red}{\left(2 \int{\frac{1}{5 x - 1} d x}\right)}}$$
$$$u=5 x - 1$$$ olsun.
Böylece $$$du=\left(5 x - 1\right)^{\prime }dx = 5 dx$$$ (adımlar » görülebilir) ve $$$dx = \frac{du}{5}$$$ elde ederiz.
Dolayısıyla,
$$2 {\color{red}{\int{\frac{1}{5 x - 1} d x}}} = 2 {\color{red}{\int{\frac{1}{5 u} d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{5}$$$ ve $$$f{\left(u \right)} = \frac{1}{u}$$$ ile uygula:
$$2 {\color{red}{\int{\frac{1}{5 u} d u}}} = 2 {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{5}\right)}}$$
$$$\frac{1}{u}$$$'nin integrali $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{2 {\color{red}{\int{\frac{1}{u} d u}}}}{5} = \frac{2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{5}$$
Hatırlayın ki $$$u=5 x - 1$$$:
$$\frac{2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{5} = \frac{2 \ln{\left(\left|{{\color{red}{\left(5 x - 1\right)}}}\right| \right)}}{5}$$
Dolayısıyla,
$$\int{\frac{2}{5 x - 1} d x} = \frac{2 \ln{\left(\left|{5 x - 1}\right| \right)}}{5}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{2}{5 x - 1} d x} = \frac{2 \ln{\left(\left|{5 x - 1}\right| \right)}}{5}+C$$
Cevap
$$$\int \frac{2}{5 x - 1}\, dx = \frac{2 \ln\left(\left|{5 x - 1}\right|\right)}{5} + C$$$A