Integrale di $$$\frac{2}{5 x - 1}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{2}{5 x - 1}\, dx$$$.
Soluzione
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=2$$$ e $$$f{\left(x \right)} = \frac{1}{5 x - 1}$$$:
$${\color{red}{\int{\frac{2}{5 x - 1} d x}}} = {\color{red}{\left(2 \int{\frac{1}{5 x - 1} d x}\right)}}$$
Sia $$$u=5 x - 1$$$.
Quindi $$$du=\left(5 x - 1\right)^{\prime }dx = 5 dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = \frac{du}{5}$$$.
L'integrale diventa
$$2 {\color{red}{\int{\frac{1}{5 x - 1} d x}}} = 2 {\color{red}{\int{\frac{1}{5 u} d u}}}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{5}$$$ e $$$f{\left(u \right)} = \frac{1}{u}$$$:
$$2 {\color{red}{\int{\frac{1}{5 u} d u}}} = 2 {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{5}\right)}}$$
L'integrale di $$$\frac{1}{u}$$$ è $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{2 {\color{red}{\int{\frac{1}{u} d u}}}}{5} = \frac{2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{5}$$
Ricordiamo che $$$u=5 x - 1$$$:
$$\frac{2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{5} = \frac{2 \ln{\left(\left|{{\color{red}{\left(5 x - 1\right)}}}\right| \right)}}{5}$$
Pertanto,
$$\int{\frac{2}{5 x - 1} d x} = \frac{2 \ln{\left(\left|{5 x - 1}\right| \right)}}{5}$$
Aggiungi la costante di integrazione:
$$\int{\frac{2}{5 x - 1} d x} = \frac{2 \ln{\left(\left|{5 x - 1}\right| \right)}}{5}+C$$
Risposta
$$$\int \frac{2}{5 x - 1}\, dx = \frac{2 \ln\left(\left|{5 x - 1}\right|\right)}{5} + C$$$A