$$$\ln\left(2\right)$$$ 的积分
您的输入
求$$$\int \ln\left(2\right)\, dx$$$。
解答
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=\ln{\left(2 \right)}$$$:
$${\color{red}{\int{\ln{\left(2 \right)} d x}}} = {\color{red}{x \ln{\left(2 \right)}}}$$
因此,
$$\int{\ln{\left(2 \right)} d x} = x \ln{\left(2 \right)}$$
加上积分常数:
$$\int{\ln{\left(2 \right)} d x} = x \ln{\left(2 \right)}+C$$
答案
$$$\int \ln\left(2\right)\, dx = x \ln\left(2\right) + C$$$A
Please try a new game Rotatly