$$$a^{u}$$$ 关于$$$u$$$的积分
您的输入
求$$$\int a^{u}\, du$$$。
解答
Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=a$$$:
$${\color{red}{\int{a^{u} d u}}} = {\color{red}{\frac{a^{u}}{\ln{\left(a \right)}}}}$$
因此,
$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$
加上积分常数:
$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}+C$$
答案
$$$\int a^{u}\, du = \frac{a^{u}}{\ln\left(a\right)} + C$$$A
Please try a new game Rotatly