$$$a^{u}$$$ の $$$u$$$ に関する積分
入力内容
$$$\int a^{u}\, du$$$ を求めよ。
解答
Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=a$$$:
$${\color{red}{\int{a^{u} d u}}} = {\color{red}{\frac{a^{u}}{\ln{\left(a \right)}}}}$$
したがって、
$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$
積分定数を加える:
$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}+C$$
解答
$$$\int a^{u}\, du = \frac{a^{u}}{\ln\left(a\right)} + C$$$A
Please try a new game Rotatly