$$$x^{2}$$$ 的二阶导数
您的输入
求$$$\frac{d^{2}}{dx^{2}} \left(x^{2}\right)$$$。
解答
求一阶导数 $$$\frac{d}{dx} \left(x^{2}\right)$$$
应用幂次法则 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,其中 $$$n = 2$$$:
$${\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} = {\color{red}\left(2 x\right)}$$因此,$$$\frac{d}{dx} \left(x^{2}\right) = 2 x$$$。
接下来,$$$\frac{d^{2}}{dx^{2}} \left(x^{2}\right) = \frac{d}{dx} \left(2 x\right)$$$
对 $$$c = 2$$$ 和 $$$f{\left(x \right)} = x$$$ 应用常数倍法则 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(2 x\right)\right)} = {\color{red}\left(2 \frac{d}{dx} \left(x\right)\right)}$$应用幂法则 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 1$$$,也就是说,$$$\frac{d}{dx} \left(x\right) = 1$$$:
$$2 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = 2 {\color{red}\left(1\right)}$$因此,$$$\frac{d}{dx} \left(2 x\right) = 2$$$。
因此,$$$\frac{d^{2}}{dx^{2}} \left(x^{2}\right) = 2$$$。
答案
$$$\frac{d^{2}}{dx^{2}} \left(x^{2}\right) = 2$$$A
Please try a new game Rotatly