Δεύτερη παράγωγος της $$$x^{2}$$$
Σχετικοί υπολογιστές: Υπολογιστής Παραγώγου, Υπολογιστής λογαριθμικής παραγώγισης
Η είσοδός σας
Βρείτε $$$\frac{d^{2}}{dx^{2}} \left(x^{2}\right)$$$.
Λύση
Βρείτε την πρώτη παράγωγο $$$\frac{d}{dx} \left(x^{2}\right)$$$
Εφαρμόστε τον κανόνα της δύναμης $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ με $$$n = 2$$$:
$${\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} = {\color{red}\left(2 x\right)}$$Άρα, $$$\frac{d}{dx} \left(x^{2}\right) = 2 x$$$.
Στη συνέχεια, $$$\frac{d^{2}}{dx^{2}} \left(x^{2}\right) = \frac{d}{dx} \left(2 x\right)$$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασιαστή $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ με $$$c = 2$$$ και $$$f{\left(x \right)} = x$$$:
$${\color{red}\left(\frac{d}{dx} \left(2 x\right)\right)} = {\color{red}\left(2 \frac{d}{dx} \left(x\right)\right)}$$Εφαρμόστε τον κανόνα δύναμης $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ με $$$n = 1$$$, δηλαδή $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$2 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = 2 {\color{red}\left(1\right)}$$Άρα, $$$\frac{d}{dx} \left(2 x\right) = 2$$$.
Επομένως, $$$\frac{d^{2}}{dx^{2}} \left(x^{2}\right) = 2$$$.
Απάντηση
$$$\frac{d^{2}}{dx^{2}} \left(x^{2}\right) = 2$$$A