Enhetsvektor i riktningen för $$$\left\langle 8 t, - \frac{6}{t^{2}}, 0\right\rangle$$$
Din inmatning
Bestäm en enhetsvektor i riktningen $$$\mathbf{\vec{u}} = \left\langle 8 t, - \frac{6}{t^{2}}, 0\right\rangle$$$.
Lösning
Vektorns längd är $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \frac{2 \sqrt{16 t^{6} + 9}}{t^{2}}$$$ (för steg, se kalkylator för vektorns längd).
Enhetsvektorn erhålls genom att dividera varje koordinat i den givna vektorn med längden.
Alltså är enhetsvektorn $$$\mathbf{\vec{e}} = \left\langle \frac{4 t^{3}}{\sqrt{16 t^{6} + 9}}, - \frac{3}{\sqrt{16 t^{6} + 9}}, 0\right\rangle$$$ (för stegen, se kalkylator för vektor-skalärmultiplikation).
Svar
Enhetsvektorn i riktning mot $$$\left\langle 8 t, - \frac{6}{t^{2}}, 0\right\rangle$$$A är $$$\left\langle \frac{4 t^{3}}{\sqrt{16 t^{6} + 9}}, - \frac{3}{\sqrt{16 t^{6} + 9}}, 0\right\rangle = \left\langle \frac{4 t^{3}}{\left(16 t^{6} + 9\right)^{0.5}}, - \frac{3}{\left(16 t^{6} + 9\right)^{0.5}}, 0\right\rangle.$$$A