Vektor satuan searah $$$\left\langle 8 t, - \frac{6}{t^{2}}, 0\right\rangle$$$

Kalkulator akan menemukan vektor satuan dalam arah vektor $$$\left\langle 8 t, - \frac{6}{t^{2}}, 0\right\rangle$$$, dengan langkah-langkah yang ditunjukkan.
$$$\langle$$$ $$$\rangle$$$
Dipisahkan dengan koma.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Tentukan vektor satuan searah $$$\mathbf{\vec{u}} = \left\langle 8 t, - \frac{6}{t^{2}}, 0\right\rangle$$$.

Solusi

Besar vektor adalah $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \frac{2 \sqrt{16 t^{6} + 9}}{t^{2}}$$$ (untuk langkah-langkahnya, lihat kalkulator besar vektor).

Vektor satuan diperoleh dengan membagi setiap koordinat dari vektor yang diberikan dengan magnitudo vektor tersebut.

Dengan demikian, vektor satuan adalah $$$\mathbf{\vec{e}} = \left\langle \frac{4 t^{3}}{\sqrt{16 t^{6} + 9}}, - \frac{3}{\sqrt{16 t^{6} + 9}}, 0\right\rangle$$$ (untuk langkah-langkahnya, lihat kalkulator perkalian skalar vektor).

Jawaban

Vektor satuan dalam arah $$$\left\langle 8 t, - \frac{6}{t^{2}}, 0\right\rangle$$$A adalah $$$\left\langle \frac{4 t^{3}}{\sqrt{16 t^{6} + 9}}, - \frac{3}{\sqrt{16 t^{6} + 9}}, 0\right\rangle = \left\langle \frac{4 t^{3}}{\left(16 t^{6} + 9\right)^{0.5}}, - \frac{3}{\left(16 t^{6} + 9\right)^{0.5}}, 0\right\rangle.$$$A


Please try a new game Rotatly