Integral de $$$\tan^{2}{\left(u \right)}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \tan^{2}{\left(u \right)}\, du$$$.
Solução
Seja $$$v=\tan{\left(u \right)}$$$.
Então $$$u=\operatorname{atan}{\left(v \right)}$$$ e $$$du=\left(\operatorname{atan}{\left(v \right)}\right)^{\prime }dv = \frac{dv}{v^{2} + 1}$$$ (as etapas podem ser vistas »).
Logo,
$${\color{red}{\int{\tan^{2}{\left(u \right)} d u}}} = {\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}}$$
Reescreva e separe a fração:
$${\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}} = {\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}$$
Integre termo a termo:
$${\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}} = {\color{red}{\left(\int{1 d v} - \int{\frac{1}{v^{2} + 1} d v}\right)}}$$
Aplique a regra da constante $$$\int c\, dv = c v$$$ usando $$$c=1$$$:
$$- \int{\frac{1}{v^{2} + 1} d v} + {\color{red}{\int{1 d v}}} = - \int{\frac{1}{v^{2} + 1} d v} + {\color{red}{v}}$$
A integral de $$$\frac{1}{v^{2} + 1}$$$ é $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$:
$$v - {\color{red}{\int{\frac{1}{v^{2} + 1} d v}}} = v - {\color{red}{\operatorname{atan}{\left(v \right)}}}$$
Recorde que $$$v=\tan{\left(u \right)}$$$:
$$- \operatorname{atan}{\left({\color{red}{v}} \right)} + {\color{red}{v}} = - \operatorname{atan}{\left({\color{red}{\tan{\left(u \right)}}} \right)} + {\color{red}{\tan{\left(u \right)}}}$$
Portanto,
$$\int{\tan^{2}{\left(u \right)} d u} = \tan{\left(u \right)} - \operatorname{atan}{\left(\tan{\left(u \right)} \right)}$$
Simplifique:
$$\int{\tan^{2}{\left(u \right)} d u} = - u + \tan{\left(u \right)}$$
Adicione a constante de integração:
$$\int{\tan^{2}{\left(u \right)} d u} = - u + \tan{\left(u \right)}+C$$
Resposta
$$$\int \tan^{2}{\left(u \right)}\, du = \left(- u + \tan{\left(u \right)}\right) + C$$$A