$$$\tan^{2}{\left(u \right)}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\tan^{2}{\left(u \right)}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \tan^{2}{\left(u \right)}\, du$$$.

Çözüm

$$$v=\tan{\left(u \right)}$$$ olsun.

O halde $$$u=\operatorname{atan}{\left(v \right)}$$$ ve $$$du=\left(\operatorname{atan}{\left(v \right)}\right)^{\prime }dv = \frac{dv}{v^{2} + 1}$$$ (adımlar » görülebilir).

O halde,

$${\color{red}{\int{\tan^{2}{\left(u \right)} d u}}} = {\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}}$$

Kesri yeniden yazın ve parçalara ayırın:

$${\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}} = {\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}$$

Her terimin integralini alın:

$${\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}} = {\color{red}{\left(\int{1 d v} - \int{\frac{1}{v^{2} + 1} d v}\right)}}$$

$$$c=1$$$ kullanarak $$$\int c\, dv = c v$$$ sabit kuralını uygula:

$$- \int{\frac{1}{v^{2} + 1} d v} + {\color{red}{\int{1 d v}}} = - \int{\frac{1}{v^{2} + 1} d v} + {\color{red}{v}}$$

$$$\frac{1}{v^{2} + 1}$$$'nin integrali $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$:

$$v - {\color{red}{\int{\frac{1}{v^{2} + 1} d v}}} = v - {\color{red}{\operatorname{atan}{\left(v \right)}}}$$

Hatırlayın ki $$$v=\tan{\left(u \right)}$$$:

$$- \operatorname{atan}{\left({\color{red}{v}} \right)} + {\color{red}{v}} = - \operatorname{atan}{\left({\color{red}{\tan{\left(u \right)}}} \right)} + {\color{red}{\tan{\left(u \right)}}}$$

Dolayısıyla,

$$\int{\tan^{2}{\left(u \right)} d u} = \tan{\left(u \right)} - \operatorname{atan}{\left(\tan{\left(u \right)} \right)}$$

Sadeleştirin:

$$\int{\tan^{2}{\left(u \right)} d u} = - u + \tan{\left(u \right)}$$

İntegrasyon sabitini ekleyin:

$$\int{\tan^{2}{\left(u \right)} d u} = - u + \tan{\left(u \right)}+C$$

Cevap

$$$\int \tan^{2}{\left(u \right)}\, du = \left(- u + \tan{\left(u \right)}\right) + C$$$A


Please try a new game Rotatly