$$$\tan^{2}{\left(u \right)}$$$の積分
入力内容
$$$\int \tan^{2}{\left(u \right)}\, du$$$ を求めよ。
解答
$$$v=\tan{\left(u \right)}$$$ とする。
すると $$$u=\operatorname{atan}{\left(v \right)}$$$ および $$$du=\left(\operatorname{atan}{\left(v \right)}\right)^{\prime }dv = \frac{dv}{v^{2} + 1}$$$(手順は»で確認できます)。
したがって、
$${\color{red}{\int{\tan^{2}{\left(u \right)} d u}}} = {\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}}$$
分数を変形して分解する:
$${\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}} = {\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}$$
項別に積分せよ:
$${\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}} = {\color{red}{\left(\int{1 d v} - \int{\frac{1}{v^{2} + 1} d v}\right)}}$$
$$$c=1$$$ に対して定数則 $$$\int c\, dv = c v$$$ を適用する:
$$- \int{\frac{1}{v^{2} + 1} d v} + {\color{red}{\int{1 d v}}} = - \int{\frac{1}{v^{2} + 1} d v} + {\color{red}{v}}$$
$$$\frac{1}{v^{2} + 1}$$$ の不定積分は $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$ です:
$$v - {\color{red}{\int{\frac{1}{v^{2} + 1} d v}}} = v - {\color{red}{\operatorname{atan}{\left(v \right)}}}$$
次のことを思い出してください $$$v=\tan{\left(u \right)}$$$:
$$- \operatorname{atan}{\left({\color{red}{v}} \right)} + {\color{red}{v}} = - \operatorname{atan}{\left({\color{red}{\tan{\left(u \right)}}} \right)} + {\color{red}{\tan{\left(u \right)}}}$$
したがって、
$$\int{\tan^{2}{\left(u \right)} d u} = \tan{\left(u \right)} - \operatorname{atan}{\left(\tan{\left(u \right)} \right)}$$
簡単化せよ:
$$\int{\tan^{2}{\left(u \right)} d u} = - u + \tan{\left(u \right)}$$
積分定数を加える:
$$\int{\tan^{2}{\left(u \right)} d u} = - u + \tan{\left(u \right)}+C$$
解答
$$$\int \tan^{2}{\left(u \right)}\, du = \left(- u + \tan{\left(u \right)}\right) + C$$$A