Integraal van $$$\tan^{2}{\left(u \right)}$$$

De calculator zal de integraal/primitieve functie van $$$\tan^{2}{\left(u \right)}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \tan^{2}{\left(u \right)}\, du$$$.

Oplossing

Zij $$$v=\tan{\left(u \right)}$$$.

Dan $$$u=\operatorname{atan}{\left(v \right)}$$$ en $$$du=\left(\operatorname{atan}{\left(v \right)}\right)^{\prime }dv = \frac{dv}{v^{2} + 1}$$$ (de stappen zijn te zien »).

Dus,

$${\color{red}{\int{\tan^{2}{\left(u \right)} d u}}} = {\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}}$$

Herschrijf en splits de breuk:

$${\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}} = {\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}$$

Integreer termgewijs:

$${\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}} = {\color{red}{\left(\int{1 d v} - \int{\frac{1}{v^{2} + 1} d v}\right)}}$$

Pas de constantenregel $$$\int c\, dv = c v$$$ toe met $$$c=1$$$:

$$- \int{\frac{1}{v^{2} + 1} d v} + {\color{red}{\int{1 d v}}} = - \int{\frac{1}{v^{2} + 1} d v} + {\color{red}{v}}$$

De integraal van $$$\frac{1}{v^{2} + 1}$$$ is $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$:

$$v - {\color{red}{\int{\frac{1}{v^{2} + 1} d v}}} = v - {\color{red}{\operatorname{atan}{\left(v \right)}}}$$

We herinneren eraan dat $$$v=\tan{\left(u \right)}$$$:

$$- \operatorname{atan}{\left({\color{red}{v}} \right)} + {\color{red}{v}} = - \operatorname{atan}{\left({\color{red}{\tan{\left(u \right)}}} \right)} + {\color{red}{\tan{\left(u \right)}}}$$

Dus,

$$\int{\tan^{2}{\left(u \right)} d u} = \tan{\left(u \right)} - \operatorname{atan}{\left(\tan{\left(u \right)} \right)}$$

Vereenvoudig:

$$\int{\tan^{2}{\left(u \right)} d u} = - u + \tan{\left(u \right)}$$

Voeg de integratieconstante toe:

$$\int{\tan^{2}{\left(u \right)} d u} = - u + \tan{\left(u \right)}+C$$

Antwoord

$$$\int \tan^{2}{\left(u \right)}\, du = \left(- u + \tan{\left(u \right)}\right) + C$$$A


Please try a new game Rotatly