Integral of $$$\tan^{2}{\left(u \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \tan^{2}{\left(u \right)}\, du$$$.
Solution
Let $$$v=\tan{\left(u \right)}$$$.
Then $$$u=\operatorname{atan}{\left(v \right)}$$$ and $$$du=\left(\operatorname{atan}{\left(v \right)}\right)^{\prime }dv = \frac{dv}{v^{2} + 1}$$$ (steps can be seen »).
The integral can be rewritten as
$${\color{red}{\int{\tan^{2}{\left(u \right)} d u}}} = {\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}}$$
Rewrite and split the fraction:
$${\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}} = {\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}$$
Integrate term by term:
$${\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}} = {\color{red}{\left(\int{1 d v} - \int{\frac{1}{v^{2} + 1} d v}\right)}}$$
Apply the constant rule $$$\int c\, dv = c v$$$ with $$$c=1$$$:
$$- \int{\frac{1}{v^{2} + 1} d v} + {\color{red}{\int{1 d v}}} = - \int{\frac{1}{v^{2} + 1} d v} + {\color{red}{v}}$$
The integral of $$$\frac{1}{v^{2} + 1}$$$ is $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$:
$$v - {\color{red}{\int{\frac{1}{v^{2} + 1} d v}}} = v - {\color{red}{\operatorname{atan}{\left(v \right)}}}$$
Recall that $$$v=\tan{\left(u \right)}$$$:
$$- \operatorname{atan}{\left({\color{red}{v}} \right)} + {\color{red}{v}} = - \operatorname{atan}{\left({\color{red}{\tan{\left(u \right)}}} \right)} + {\color{red}{\tan{\left(u \right)}}}$$
Therefore,
$$\int{\tan^{2}{\left(u \right)} d u} = \tan{\left(u \right)} - \operatorname{atan}{\left(\tan{\left(u \right)} \right)}$$
Simplify:
$$\int{\tan^{2}{\left(u \right)} d u} = - u + \tan{\left(u \right)}$$
Add the constant of integration:
$$\int{\tan^{2}{\left(u \right)} d u} = - u + \tan{\left(u \right)}+C$$
Answer
$$$\int \tan^{2}{\left(u \right)}\, du = \left(- u + \tan{\left(u \right)}\right) + C$$$A