$$$\tan^{2}{\left(u \right)}$$$ 的積分
您的輸入
求$$$\int \tan^{2}{\left(u \right)}\, du$$$。
解答
令 $$$v=\tan{\left(u \right)}$$$。
則 $$$u=\operatorname{atan}{\left(v \right)}$$$ 與 $$$du=\left(\operatorname{atan}{\left(v \right)}\right)^{\prime }dv = \frac{dv}{v^{2} + 1}$$$(步驟見»)。
該積分變為
$${\color{red}{\int{\tan^{2}{\left(u \right)} d u}}} = {\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}}$$
重寫並拆分分式:
$${\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}} = {\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}$$
逐項積分:
$${\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}} = {\color{red}{\left(\int{1 d v} - \int{\frac{1}{v^{2} + 1} d v}\right)}}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, dv = c v$$$:
$$- \int{\frac{1}{v^{2} + 1} d v} + {\color{red}{\int{1 d v}}} = - \int{\frac{1}{v^{2} + 1} d v} + {\color{red}{v}}$$
$$$\frac{1}{v^{2} + 1}$$$ 的積分是 $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$:
$$v - {\color{red}{\int{\frac{1}{v^{2} + 1} d v}}} = v - {\color{red}{\operatorname{atan}{\left(v \right)}}}$$
回顧一下 $$$v=\tan{\left(u \right)}$$$:
$$- \operatorname{atan}{\left({\color{red}{v}} \right)} + {\color{red}{v}} = - \operatorname{atan}{\left({\color{red}{\tan{\left(u \right)}}} \right)} + {\color{red}{\tan{\left(u \right)}}}$$
因此,
$$\int{\tan^{2}{\left(u \right)} d u} = \tan{\left(u \right)} - \operatorname{atan}{\left(\tan{\left(u \right)} \right)}$$
化簡:
$$\int{\tan^{2}{\left(u \right)} d u} = - u + \tan{\left(u \right)}$$
加上積分常數:
$$\int{\tan^{2}{\left(u \right)} d u} = - u + \tan{\left(u \right)}+C$$
答案
$$$\int \tan^{2}{\left(u \right)}\, du = \left(- u + \tan{\left(u \right)}\right) + C$$$A