Integralen av $$$\tan^{2}{\left(u \right)}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \tan^{2}{\left(u \right)}\, du$$$.
Lösning
Låt $$$v=\tan{\left(u \right)}$$$ vara.
Då gäller $$$u=\operatorname{atan}{\left(v \right)}$$$ och $$$du=\left(\operatorname{atan}{\left(v \right)}\right)^{\prime }dv = \frac{dv}{v^{2} + 1}$$$ (stegen kan ses »).
Integralen blir
$${\color{red}{\int{\tan^{2}{\left(u \right)} d u}}} = {\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}}$$
Skriv om och dela upp bråket:
$${\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}} = {\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}$$
Integrera termvis:
$${\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}} = {\color{red}{\left(\int{1 d v} - \int{\frac{1}{v^{2} + 1} d v}\right)}}$$
Tillämpa konstantregeln $$$\int c\, dv = c v$$$ med $$$c=1$$$:
$$- \int{\frac{1}{v^{2} + 1} d v} + {\color{red}{\int{1 d v}}} = - \int{\frac{1}{v^{2} + 1} d v} + {\color{red}{v}}$$
Integralen av $$$\frac{1}{v^{2} + 1}$$$ är $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$:
$$v - {\color{red}{\int{\frac{1}{v^{2} + 1} d v}}} = v - {\color{red}{\operatorname{atan}{\left(v \right)}}}$$
Kom ihåg att $$$v=\tan{\left(u \right)}$$$:
$$- \operatorname{atan}{\left({\color{red}{v}} \right)} + {\color{red}{v}} = - \operatorname{atan}{\left({\color{red}{\tan{\left(u \right)}}} \right)} + {\color{red}{\tan{\left(u \right)}}}$$
Alltså,
$$\int{\tan^{2}{\left(u \right)} d u} = \tan{\left(u \right)} - \operatorname{atan}{\left(\tan{\left(u \right)} \right)}$$
Förenkla:
$$\int{\tan^{2}{\left(u \right)} d u} = - u + \tan{\left(u \right)}$$
Lägg till integrationskonstanten:
$$\int{\tan^{2}{\left(u \right)} d u} = - u + \tan{\left(u \right)}+C$$
Svar
$$$\int \tan^{2}{\left(u \right)}\, du = \left(- u + \tan{\left(u \right)}\right) + C$$$A