Integral de $$$\sec^{5}{\left(u \right)}$$$

A calculadora encontrará a integral/antiderivada de $$$\sec^{5}{\left(u \right)}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \sec^{5}{\left(u \right)}\, du$$$.

Solução

Para a integral $$$\int{\sec^{5}{\left(u \right)} d u}$$$, use integração por partes $$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$.

Sejam $$$\operatorname{m}=\sec^{3}{\left(u \right)}$$$ e $$$\operatorname{dv}=\sec^{2}{\left(u \right)} du$$$.

Então $$$\operatorname{dm}=\left(\sec^{3}{\left(u \right)}\right)^{\prime }du=3 \tan{\left(u \right)} \sec^{3}{\left(u \right)} du$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{\sec^{2}{\left(u \right)} d u}=\tan{\left(u \right)}$$$ (os passos podem ser vistos »).

A integral torna-se

$$\int{\sec^{5}{\left(u \right)} d u}=\sec^{3}{\left(u \right)} \cdot \tan{\left(u \right)}-\int{\tan{\left(u \right)} \cdot 3 \tan{\left(u \right)} \sec^{3}{\left(u \right)} d u}=\tan{\left(u \right)} \sec^{3}{\left(u \right)} - \int{3 \tan^{2}{\left(u \right)} \sec^{3}{\left(u \right)} d u}$$

Coloque a constante em evidência:

$$\tan{\left(u \right)} \sec^{3}{\left(u \right)} - \int{3 \tan^{2}{\left(u \right)} \sec^{3}{\left(u \right)} d u}=\tan{\left(u \right)} \sec^{3}{\left(u \right)} - 3 \int{\tan^{2}{\left(u \right)} \sec^{3}{\left(u \right)} d u}$$

Aplique a fórmula $$$\tan^{2}{\left(u \right)} = \sec^{2}{\left(u \right)} - 1$$$:

$$\tan{\left(u \right)} \sec^{3}{\left(u \right)} - 3 \int{\tan^{2}{\left(u \right)} \sec^{3}{\left(u \right)} d u}=\tan{\left(u \right)} \sec^{3}{\left(u \right)} - 3 \int{\left(\sec^{2}{\left(u \right)} - 1\right) \sec^{3}{\left(u \right)} d u}$$

Expandir:

$$\tan{\left(u \right)} \sec^{3}{\left(u \right)} - 3 \int{\left(\sec^{2}{\left(u \right)} - 1\right) \sec^{3}{\left(u \right)} d u}=\tan{\left(u \right)} \sec^{3}{\left(u \right)} - 3 \int{\left(\sec^{5}{\left(u \right)} - \sec^{3}{\left(u \right)}\right)d u}$$

A integral de uma diferença é a diferença das integrais:

$$\tan{\left(u \right)} \sec^{3}{\left(u \right)} - 3 \int{\left(\sec^{5}{\left(u \right)} - \sec^{3}{\left(u \right)}\right)d u}=\tan{\left(u \right)} \sec^{3}{\left(u \right)} + 3 \int{\sec^{3}{\left(u \right)} d u} - 3 \int{\sec^{5}{\left(u \right)} d u}$$

Assim, obtemos a seguinte equação linear simples em relação à integral:

$${\color{red}{\int{\sec^{5}{\left(u \right)} d u}}}=\tan{\left(u \right)} \sec^{3}{\left(u \right)} + 3 \int{\sec^{3}{\left(u \right)} d u} - 3 {\color{red}{\int{\sec^{5}{\left(u \right)} d u}}}$$

Resolvendo, obtemos que

$$\int{\sec^{5}{\left(u \right)} d u}=\frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \int{\sec^{3}{\left(u \right)} d u}}{4}$$

Para a integral $$$\int{\sec^{3}{\left(u \right)} d u}$$$, use integração por partes $$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$.

Sejam $$$\operatorname{m}=\sec{\left(u \right)}$$$ e $$$\operatorname{dv}=\sec^{2}{\left(u \right)} du$$$.

Então $$$\operatorname{dm}=\left(\sec{\left(u \right)}\right)^{\prime }du=\tan{\left(u \right)} \sec{\left(u \right)} du$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{\sec^{2}{\left(u \right)} d u}=\tan{\left(u \right)}$$$ (os passos podem ser vistos »).

A integral torna-se

$$\int{\sec^{3}{\left(u \right)} d u}=\sec{\left(u \right)} \cdot \tan{\left(u \right)}-\int{\tan{\left(u \right)} \cdot \tan{\left(u \right)} \sec{\left(u \right)} d u}=\tan{\left(u \right)} \sec{\left(u \right)} - \int{\tan^{2}{\left(u \right)} \sec{\left(u \right)} d u}$$

Aplique a fórmula $$$\tan^{2}{\left(u \right)} = \sec^{2}{\left(u \right)} - 1$$$:

$$\tan{\left(u \right)} \sec{\left(u \right)} - \int{\tan^{2}{\left(u \right)} \sec{\left(u \right)} d u}=\tan{\left(u \right)} \sec{\left(u \right)} - \int{\left(\sec^{2}{\left(u \right)} - 1\right) \sec{\left(u \right)} d u}$$

Expandir:

$$\tan{\left(u \right)} \sec{\left(u \right)} - \int{\left(\sec^{2}{\left(u \right)} - 1\right) \sec{\left(u \right)} d u}=\tan{\left(u \right)} \sec{\left(u \right)} - \int{\left(\sec^{3}{\left(u \right)} - \sec{\left(u \right)}\right)d u}$$

A integral de uma diferença é a diferença das integrais:

$$\tan{\left(u \right)} \sec{\left(u \right)} - \int{\left(\sec^{3}{\left(u \right)} - \sec{\left(u \right)}\right)d u}=\tan{\left(u \right)} \sec{\left(u \right)} + \int{\sec{\left(u \right)} d u} - \int{\sec^{3}{\left(u \right)} d u}$$

Assim, obtemos a seguinte equação linear simples em relação à integral:

$${\color{red}{\int{\sec^{3}{\left(u \right)} d u}}}=\tan{\left(u \right)} \sec{\left(u \right)} + \int{\sec{\left(u \right)} d u} - {\color{red}{\int{\sec^{3}{\left(u \right)} d u}}}$$

Resolvendo, obtemos que

$$\int{\sec^{3}{\left(u \right)} d u}=\frac{\tan{\left(u \right)} \sec{\left(u \right)}}{2} + \frac{\int{\sec{\left(u \right)} d u}}{2}$$

Portanto,

$$\frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 {\color{red}{\int{\sec^{3}{\left(u \right)} d u}}}}{4} = \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 {\color{red}{\left(\frac{\tan{\left(u \right)} \sec{\left(u \right)}}{2} + \frac{\int{\sec{\left(u \right)} d u}}{2}\right)}}}{4}$$

Reescreva a secante como $$$\sec\left(u\right)=\frac{1}{\cos\left(u\right)}$$$:

$$\frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\sec{\left(u \right)} d u}}}}{8} = \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{\cos{\left(u \right)}} d u}}}}{8}$$

Reescreva o cosseno em termos do seno usando a fórmula $$$\cos\left(u\right)=\sin\left(u + \frac{\pi}{2}\right)$$$ e depois reescreva o seno usando a fórmula do ângulo duplo $$$\sin\left(u\right)=2\sin\left(\frac{u}{2}\right)\cos\left(\frac{u}{2}\right)$$$:

$$\frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{\cos{\left(u \right)}} d u}}}}{8} = \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{8}$$

Multiplique o numerador e o denominador por $$$\sec^2\left(\frac{u}{2} + \frac{\pi}{4} \right)$$$:

$$\frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{8} = \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{8}$$

Seja $$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$.

Então $$$dv=\left(\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}\right)^{\prime }du = \frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2} du$$$ (veja os passos »), e obtemos $$$\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} du = 2 dv$$$.

Assim,

$$\frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{8} = \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{v} d v}}}}{8}$$

A integral de $$$\frac{1}{v}$$$ é $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$\frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{v} d v}}}}{8} = \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{8}$$

Recorde que $$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$:

$$\frac{3 \ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{8} + \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} = \frac{3 \ln{\left(\left|{{\color{red}{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}}{8} + \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8}$$

Portanto,

$$\int{\sec^{5}{\left(u \right)} d u} = \frac{3 \ln{\left(\left|{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{8} + \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8}$$

Adicione a constante de integração:

$$\int{\sec^{5}{\left(u \right)} d u} = \frac{3 \ln{\left(\left|{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{8} + \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8}+C$$

Resposta

$$$\int \sec^{5}{\left(u \right)}\, du = \left(\frac{3 \ln\left(\left|{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}\right|\right)}{8} + \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8}\right) + C$$$A


Please try a new game Rotatly