Ολοκλήρωμα του $$$\sec^{5}{\left(u \right)}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\sec^{5}{\left(u \right)}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \sec^{5}{\left(u \right)}\, du$$$.

Λύση

Για το ολοκλήρωμα $$$\int{\sec^{5}{\left(u \right)} d u}$$$, χρησιμοποιήστε την ολοκλήρωση κατά μέρη $$$\int \operatorname{c} \operatorname{dv} = \operatorname{c}\operatorname{v} - \int \operatorname{v} \operatorname{dc}$$$.

Έστω $$$\operatorname{c}=\sec^{3}{\left(u \right)}$$$ και $$$\operatorname{dv}=\sec^{2}{\left(u \right)} du$$$.

Τότε $$$\operatorname{dc}=\left(\sec^{3}{\left(u \right)}\right)^{\prime }du=3 \tan{\left(u \right)} \sec^{3}{\left(u \right)} du$$$ (τα βήματα φαίνονται ») και $$$\operatorname{v}=\int{\sec^{2}{\left(u \right)} d u}=\tan{\left(u \right)}$$$ (τα βήματα φαίνονται »).

Το ολοκλήρωμα μπορεί να επαναγραφεί ως

$$\int{\sec^{5}{\left(u \right)} d u}=\sec^{3}{\left(u \right)} \cdot \tan{\left(u \right)}-\int{\tan{\left(u \right)} \cdot 3 \tan{\left(u \right)} \sec^{3}{\left(u \right)} d u}=\tan{\left(u \right)} \sec^{3}{\left(u \right)} - \int{3 \tan^{2}{\left(u \right)} \sec^{3}{\left(u \right)} d u}$$

Βγάλτε τον σταθερό παράγοντα έξω:

$$\tan{\left(u \right)} \sec^{3}{\left(u \right)} - \int{3 \tan^{2}{\left(u \right)} \sec^{3}{\left(u \right)} d u}=\tan{\left(u \right)} \sec^{3}{\left(u \right)} - 3 \int{\tan^{2}{\left(u \right)} \sec^{3}{\left(u \right)} d u}$$

Εφαρμόστε τον τύπο $$$\tan^{2}{\left(u \right)} = \sec^{2}{\left(u \right)} - 1$$$:

$$\tan{\left(u \right)} \sec^{3}{\left(u \right)} - 3 \int{\tan^{2}{\left(u \right)} \sec^{3}{\left(u \right)} d u}=\tan{\left(u \right)} \sec^{3}{\left(u \right)} - 3 \int{\left(\sec^{2}{\left(u \right)} - 1\right) \sec^{3}{\left(u \right)} d u}$$

Ανάπτυξη:

$$\tan{\left(u \right)} \sec^{3}{\left(u \right)} - 3 \int{\left(\sec^{2}{\left(u \right)} - 1\right) \sec^{3}{\left(u \right)} d u}=\tan{\left(u \right)} \sec^{3}{\left(u \right)} - 3 \int{\left(\sec^{5}{\left(u \right)} - \sec^{3}{\left(u \right)}\right)d u}$$

Το ολοκλήρωμα μιας διαφοράς είναι η διαφορά των ολοκληρωμάτων:

$$\tan{\left(u \right)} \sec^{3}{\left(u \right)} - 3 \int{\left(\sec^{5}{\left(u \right)} - \sec^{3}{\left(u \right)}\right)d u}=\tan{\left(u \right)} \sec^{3}{\left(u \right)} + 3 \int{\sec^{3}{\left(u \right)} d u} - 3 \int{\sec^{5}{\left(u \right)} d u}$$

Συνεπώς, προκύπτει η ακόλουθη απλή γραμμική εξίσωση ως προς το ολοκλήρωμα:

$${\color{red}{\int{\sec^{5}{\left(u \right)} d u}}}=\tan{\left(u \right)} \sec^{3}{\left(u \right)} + 3 \int{\sec^{3}{\left(u \right)} d u} - 3 {\color{red}{\int{\sec^{5}{\left(u \right)} d u}}}$$

Λύνοντάς το, προκύπτει ότι

$$\int{\sec^{5}{\left(u \right)} d u}=\frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \int{\sec^{3}{\left(u \right)} d u}}{4}$$

Για το ολοκλήρωμα $$$\int{\sec^{3}{\left(u \right)} d u}$$$, χρησιμοποιήστε την ολοκλήρωση κατά μέρη $$$\int \operatorname{c} \operatorname{dv} = \operatorname{c}\operatorname{v} - \int \operatorname{v} \operatorname{dc}$$$.

Έστω $$$\operatorname{c}=\sec{\left(u \right)}$$$ και $$$\operatorname{dv}=\sec^{2}{\left(u \right)} du$$$.

Τότε $$$\operatorname{dc}=\left(\sec{\left(u \right)}\right)^{\prime }du=\tan{\left(u \right)} \sec{\left(u \right)} du$$$ (τα βήματα φαίνονται ») και $$$\operatorname{v}=\int{\sec^{2}{\left(u \right)} d u}=\tan{\left(u \right)}$$$ (τα βήματα φαίνονται »).

Επομένως,

$$\int{\sec^{3}{\left(u \right)} d u}=\sec{\left(u \right)} \cdot \tan{\left(u \right)}-\int{\tan{\left(u \right)} \cdot \tan{\left(u \right)} \sec{\left(u \right)} d u}=\tan{\left(u \right)} \sec{\left(u \right)} - \int{\tan^{2}{\left(u \right)} \sec{\left(u \right)} d u}$$

Εφαρμόστε τον τύπο $$$\tan^{2}{\left(u \right)} = \sec^{2}{\left(u \right)} - 1$$$:

$$\tan{\left(u \right)} \sec{\left(u \right)} - \int{\tan^{2}{\left(u \right)} \sec{\left(u \right)} d u}=\tan{\left(u \right)} \sec{\left(u \right)} - \int{\left(\sec^{2}{\left(u \right)} - 1\right) \sec{\left(u \right)} d u}$$

Ανάπτυξη:

$$\tan{\left(u \right)} \sec{\left(u \right)} - \int{\left(\sec^{2}{\left(u \right)} - 1\right) \sec{\left(u \right)} d u}=\tan{\left(u \right)} \sec{\left(u \right)} - \int{\left(\sec^{3}{\left(u \right)} - \sec{\left(u \right)}\right)d u}$$

Το ολοκλήρωμα μιας διαφοράς είναι η διαφορά των ολοκληρωμάτων:

$$\tan{\left(u \right)} \sec{\left(u \right)} - \int{\left(\sec^{3}{\left(u \right)} - \sec{\left(u \right)}\right)d u}=\tan{\left(u \right)} \sec{\left(u \right)} + \int{\sec{\left(u \right)} d u} - \int{\sec^{3}{\left(u \right)} d u}$$

Συνεπώς, προκύπτει η ακόλουθη απλή γραμμική εξίσωση ως προς το ολοκλήρωμα:

$${\color{red}{\int{\sec^{3}{\left(u \right)} d u}}}=\tan{\left(u \right)} \sec{\left(u \right)} + \int{\sec{\left(u \right)} d u} - {\color{red}{\int{\sec^{3}{\left(u \right)} d u}}}$$

Λύνοντάς το, προκύπτει ότι

$$\int{\sec^{3}{\left(u \right)} d u}=\frac{\tan{\left(u \right)} \sec{\left(u \right)}}{2} + \frac{\int{\sec{\left(u \right)} d u}}{2}$$

Επομένως,

$$\frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 {\color{red}{\int{\sec^{3}{\left(u \right)} d u}}}}{4} = \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 {\color{red}{\left(\frac{\tan{\left(u \right)} \sec{\left(u \right)}}{2} + \frac{\int{\sec{\left(u \right)} d u}}{2}\right)}}}{4}$$

Εκφράστε την τέμνουσα ως $$$\sec\left(u\right)=\frac{1}{\cos\left(u\right)}$$$:

$$\frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\sec{\left(u \right)} d u}}}}{8} = \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{\cos{\left(u \right)}} d u}}}}{8}$$

Εκφράστε το συνημίτονο σε όρους του ημιτόνου χρησιμοποιώντας τον τύπο $$$\cos\left(u\right)=\sin\left(u + \frac{\pi}{2}\right)$$$ και στη συνέχεια εκφράστε το ημίτονο χρησιμοποιώντας τον τύπο της διπλής γωνίας $$$\sin\left(u\right)=2\sin\left(\frac{u}{2}\right)\cos\left(\frac{u}{2}\right)$$$:

$$\frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{\cos{\left(u \right)}} d u}}}}{8} = \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{8}$$

Πολλαπλασιάστε τον αριθμητή και τον παρονομαστή με $$$\sec^2\left(\frac{u}{2} + \frac{\pi}{4} \right)$$$:

$$\frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{8} = \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{8}$$

Έστω $$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$.

Τότε $$$dv=\left(\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}\right)^{\prime }du = \frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2} du$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} du = 2 dv$$$.

Το ολοκλήρωμα μπορεί να επαναγραφεί ως

$$\frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{8} = \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{v} d v}}}}{8}$$

Το ολοκλήρωμα του $$$\frac{1}{v}$$$ είναι $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$\frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{v} d v}}}}{8} = \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} + \frac{3 {\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{8}$$

Θυμηθείτε ότι $$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$:

$$\frac{3 \ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{8} + \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8} = \frac{3 \ln{\left(\left|{{\color{red}{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}}{8} + \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8}$$

Επομένως,

$$\int{\sec^{5}{\left(u \right)} d u} = \frac{3 \ln{\left(\left|{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{8} + \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\sec^{5}{\left(u \right)} d u} = \frac{3 \ln{\left(\left|{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{8} + \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8}+C$$

Απάντηση

$$$\int \sec^{5}{\left(u \right)}\, du = \left(\frac{3 \ln\left(\left|{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}\right|\right)}{8} + \frac{\tan{\left(u \right)} \sec^{3}{\left(u \right)}}{4} + \frac{3 \tan{\left(u \right)} \sec{\left(u \right)}}{8}\right) + C$$$A


Please try a new game Rotatly